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ACCELERATION WAVE IN A GAS—SOLID PARTICLE
MIXTURE WITH CONSIDERATION OF FUSION

A, V. Fedorov UDC 532.529

A flow of gas mixed with solid particles occurs in many technclogical processes, in
particular, in detonation deposition. of finely dispersed metal particles on the. surfaces
of machine parts. The working substance (gas at high pressure and temperature) has suffi-
ciently high state. parameters so that fusion of the particles being driven occurs. This
fusion may be of a nonequilibrium character, so that it is of interest to consider problems
which develop in high velocity motion of such mixtures with consideration of this process.

The equations describing propagation of plane waves in an air-dispersed mixture of gas
and solid particles at temperatures of the continuocus phase sufficient for phase transition
have the form [1, 2]

02/0X = pyv, 0B/t = % = —(1/1)(§ — Ee),
dpldX + p,0uldt = 0, deldt + pov/ot = 0,
= 6(87 v, E)v P = —¢& (Sv v, E)a T = és (Sa v, E)a

where the Cartesian component x describing the motion of the medium is a function of the posi-
tion of a point at the initial moment X and the current time t, i.e., x = x(X, t); p, is the
initial density of the mixture; v, p, u, e, T, S are the specific volume, pressure, velocity,
internal energy, temperature, and entropy of the mixture; £ is the relative mass concentration
of the liquid phase; &g = Eo(S, v) is the equation of equilibrium fusion; 1 is the relaxation
time of the fusion process.

We will assume that at the initial moment the mixture has the following parameter values
v=1, §=§, S =5, 2z =X.
Following [3], we will define a second-order wave as a singularity in the flow propagating
along the line y = y(Y, T) on which x(X, t) may have discontinuities in its second derivatives,

while x(X, t), S(X, t), £(X, t) have continuous first derivatives. Second-order waves are
called acceleration waves.

Thus, by definition, in an acceleration wave the equations
2] = ] = [ul = [S] = [E] =0, [p] = ¢; — g,
are satisfied.

Using the equation of state and the kinetic and energy equatiouns, we find
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[p] = [7] = [e] = [E] = [S] =0, (1)

and applying Maxwell's theorem, obtain

[E.] = [S.]1=0. (2)

We introduce the quantity a = [0], describing the behavior of the wave which propagates
at sonic velocity v2 = —v%3p/3v. As was shown in [3], on the basis of Egs. (1), (2), the
equation describing the behavior of the parameter a,

da/dt = —pa + pa’/A (3)

must satisfy the Cauchy condition
a(O) = ao- . (4)
Here u==vﬁk%d2ﬁ; A= Pﬁ%cﬂvpm>; cf is the frozen speed of sound:. the values of p,. A are

taken in the unperturbed state. In view of the fact that M==Zﬁek/(73ﬁ€a) and the condition
of thermodynamic stability egg > 0 it-is'evident that p > 0. "Then the sign of A is deter-
mined by the sign of the expression p,, =91 + 9)pp,2 >0 , i.e., A > 0.

We write the solution of the Cauchy problem, Egs. (3), (4), in the form

a(t) = hay/[(h — ap)ett -~ a,), (5)
trivial analysis of which permits the following:

Conclusion 1. If the initial acceleration of the piston a, which sets in motion the
mixture of gas and particles in which the nonequilibrium fusion occurs is such that 0 < a4 <
A, then the amplitude of the acceleration wave a(t) - 0 with increase in t; if A = a,, then
a(t) = a;, and for a; > A there exists a t = t, = ~(1/p)In(1 -~ A/a,), then a(t) increaseswithout
limit, i.e., a shock wave is formed.

We will consider the near-frozen approximation in Eqs. (3), (4). We use the notation
= uy/t, X = A;/1, then as v » » Eq. (3) transforms to the equation da./dt = paZ/h [3],
which has a solution of the Cauchy problem Eqs. (3), (4) aw = ay/(1 — (p,/A)agt) . It is evi-
dent that in the approximation of mixture flow frozen with respect to fusion a shock wave
is always formed and t, = A,/(y,a,). Expanding solution (5) in a series in 17! for the
condition t/t << 1, we obtain outside the boundary layer the solution

alt) = an(t)(1 — pilas(t)tit + o(t/7)?), .

which describes near-frozen flow to the accuracy of o(1~%).

Choosing the equation of state in the form e = EVlT + Lg [2], we find

w L :
7\,=h27','\;?g(l‘1)s L1=z 7t w=v—ﬁ'
Vi
_y—ti _ L3 a y—1
”_*ZY Tg(Ll)s, g(Ll)"" Lf+§“1’ ﬁ=_I‘..’ h2=v+1.

In performing numerical calculations with Eq. (5) the effect of volume particle con-
centration n = (m, + m3), on the value of the critical acceleration A was studied. Tt proves
to be the case (Fig. 1) that there exists some limiting value of n = n, was studied. It
proves to be the case (Fig. 1) that there exists some limiting value of n = n,, at which A
reaches a maximum. Decrease in the number of particles leads to a decrease in the limiting
acceleration. This is caused by the fact that the change n - 0 implies that the mixture to
a great extent has the properties of a pure gas, in which shock waves are formed without
limitations as to limiting acceleration [3]. It can be shown that A ~ R(c;/yt)rLin at small
n, 0 <L <=, i.e., A is determined mainly by the fraction of particles in the mixture.

Increase in the quantity of particles n > nx also leads to a decrease in A, caused by
the smallness of the specific particle volume 1/r << 1. Thus, the following situation exists
within the mixture. At low particle concentrations the main process determining the limiting
acceleration is the phase transition. With increase in n > n, the effect of the fusion process
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decreases, and the effect of the volume fraction of particles (decrease in specific volume
of the mixture) increases.

The effect of the heat of phase transition on A was studied. Tt is obvious that there
exists some limiting value of the heat of fusion L,, after attainment of which the quantity
A will saturate, i.e., at L > L, the limiting acceleration changes little (Fig. 2). This
is true because the limiting acceleratlon is determined by the difference c? — Ce’ which

depends only weakly on the heat of phase transition at high values (A ~ B (pv/y1)§,) . With
change in L over the interval 0 < L <L, an abrupt rise in limiting acceleration occurs,

caused by expenditure of gas energy in particle fusion. We note that at low [, Aﬂvh2 goLi

i.e., coincides with the asymptote for A values corresponding to low particle concentratlons.
This permits study of highly concentrated air-dispersed media with a discrete phase having a
sufficiently low heat of phase transition on the basis of low concentration gas—particle
mixtures with a finite heat of phase transition.

Figure 3 shows the change in acceleration with time for several characteristic relaxa-
tion times (t = 1, 2, 3, 4 for curves 1-4). It is evident that with increase in the relaza-
tion time t the mixture acceleration profile on the wave frontapproaches the acceleration
profile in a mixture with frozen fusion process (see Eq. (5)). The shock wave formation
time then decreases with increase in t (Fig. 4), which is due to a decrease in the quantity
of energy expended in the fusion process. It develops that at 1 > 3 the phase transition
has practically no effect on the shock-wave formation time.

In conclusion, we will note that the main calculation results were obtained with para-
meter values cy; = 750, cp: = 1050, R = 300, T, = 2300 K, p, = 106, r = 2700, L = 2-105.
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