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ACCELERATION WAVE IN A GAS-SOLID PARTICLE 

MIXTURE WITH CONSIDERATION OF FUSION 

A. V. Fedorov UDC 532.529 

A flow of gas mixed with solid particles occurs in many technological processes, in 
particular; in detonation deposition of finely dispersed metal particles on thesurfaces 
of machine parts. The working substance (gas at high pressure and temperature) has suffi- 
ciently high state:parameters so that fusion of the particles being driven occurs. This 
fusion may be of a nonequilibrium character, so that it is of interest to consider problems 
which develop :in high velocity motion of such mixtures with consideration of this process. 

The equations describing propagation of plane waves in an air-dispersed mixture of gas 
and solid particles at temperatures of the continuous phase sufficient for phase transition 
have the form [I, 2] 

o x / o X  = po v, o~/ot = • = - ( i / ' O ( ~ -  ~e), 
8plOX + PoOU/Ot = O, Oe/Ot + pOv/St = O, 

e = e (S ,  v ,  ~), p = - -e~ (8 ,  v, ~), r = es (S ,  v,  ~), 

where the Cartesian component x describing the motion of the medium is a function of the posi- 
tion of a point at the initial moment X and the current time t, i.e., x = x(X, t); P0 is the 
initial density of the mixture; v, p, u, e, T, S are the specific volume, pressure, velocity, 
internal energy, temperature, and entropy of the mixture; g is the relative mass concentration 
of the liquid phase; ge = ge (S, v) is the equation of equilibrium fusion; T is the relaxation 
time of the fusion process. 

We will assume that at the initial moment the mixture has the following parameter values 

v = v o ,  ~ =  ~o, S =S0, x = X .  
Following [3], we will define a second-order wave as a singularity in the flow propagating 

along the line y = y(Y, T) on which x(X, t) may have discontinuities in its second derivatives, 
while x(X, t), S(X, t), $(X, t) have continuous first derivatives. Second-order waves are 
called acceleration waves. 

Thus, by ,definition, in an acceleration wave the equations 

[x] = Iv] = [u] = IS ]  = [~] =0, [~] = ~ i - - %  

are satisfied. 

Using the equation of state and the kinetic and energy equations, we find 
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[p ]  = I T ]  = [e] = [ ~ l  = i S ]  = 0 ,  

and a p p l y i n g  M a x w e l l ' s  t h e o r e m ,  o b t a i n  

(1) 

[~1 = [ s ~ ]  = 0 .  ( 2 )  

We i n t r o d u c e  t h e  q u a n t i t y  a = [ 6 ] ,  d e s c r i b i n g  t h e  b e h a v i o r  o f  t h e  wave which  p r o p a g a t e s  
a t  s o n i c  v e l o c i t y  v 2 = - v 2 ~ p / ~ v .  As was shown in  [ 3 ] ,  on t h e  b a s i s  o f  Eqs.  ( 1 ) ,  ( 2 ) ,  t h e  
e q u a t i o n  d e s c r i b i n g  t h e  b e h a v i o r  o f  t h e  p a r a m e t e r  a ,  

da/dt  = - - ~ a  + ~ta'~/E (3)  

must  s a t i s f y  t h e  Cauchy c o n d i t i o n  

a(0)  = a o . .  ( 4 )  
2 2. 

Here ~=v p~• ~ = P~• ; cf is the frozen speed of sound: the values of p, X are 
2 2 2 

taken in the unperturbed state. In view of the fact that ~ = v evr162 and the condition 
of thermodynamic stability e$~ >_ 0 it is evident that p > 0. Then the sign of ~ is deter- 
mined by the sign of the expression pv~ = ?(i q-y)pv,~>0 , i.e., X > 0. 

We write the solution of the Cauchy problem, Eqs. (3), (4), in the form 

a(t) = )~ao/[(~ - -  ao)e~r ~ ao], (5)  

trivial analysis of which permits the following: 

Conclusion I. If the initial acceleration of the piston a 0 which sets in motion the 
mixture of gas and particles in which the nonequilibrium fusion occurs is such that 0 < a 0 < 
X, then the amplitude of the acceleration wave a(t) + 0 with increase in t; if X = a0, then 
a(t) ~ a 0, and for a 0 > X there exists a t = t, = -(i/p)in(l - X/a0), then a(t) increases without 
limit, i.e., a shock wave is formed. 

We will consider the near-frozen approximation in Eqs. (3), (4). We use the notation 
= ~i/~, X = X!/~, then as �9 ~ ~ Eq. (3) transforms to the equation ~a~/dt = ~1a~/~1 [3], 

which has a solution of the Cauchy problem Eqs. (3), (4) a~ =ao/(i--(9i/%liaot ) It is evi- 
dent that in the approximation of mixture flow frozen with respect to fusion a shock wave 
is always formed and t, = X1/(~la0). Expanding solution (5) in a series in T- I for the 
condition t/T << i, we obtain outside the boundary layer the solution 

a(t) = a ~ ( t ) ( l -  9l /a~( t ) t /T  + o(t/z)~), . 

which describes near-frozen flow to the accuracy of o(T-2). 

Choosing the equation of state in the form e = cviT + L~ [2], we find 

%=h2 w c! _,L , L 
-~--~- ~ ( i), LI = -- w = v -- ~ 

-CvlT~ 

? - - i : l  L1 ~ a h 2 _  7"I 
---- ~ ~-g (L1)" g (51) ---- L~ q- ~-1 ,  [5 = T '  --  ?--~-~" 

In performing numerical calculations with Eq. (5) the effect of volume particle con- 
centration q = (m2 + m3)0 on the value of the critical acceleration X was studied. It proves 
to be the case (Fig. I) that there exists some limiting value of q = q, was studied. It 
proves to be the case (Fig. i) that there exists some limiting value of q = q,, at which X 
reaches a maximum. Decrease in the number of particles leads to a decrease in the limiting 
acceleration. This is caused by the fact that the change q + 0 implies that the mixture to 
a great extent has the properties of a pure gas, in which shock waves are formed without 
limitations as to limiting acceleration [3]. It can be shown that %Nh2(c]/y~)rL~ at small 
~, 0 < L < ~, i.e., X is determined mainly by the fraction of particles in the mixture. 

Increase in the quantity of particles q > ~, also leads to a decrease in X, caused by 
the smallness of the specific particle volume I/r << i. Thus, the following situation exists 
within the mixture. At low particle concentrations the main process determining the limiting 
acceleration is the phase transition. With increase in D ~ q, the effect of the fusion process 
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decreases, and the effect of the volume fraction of particles (decrease in specific volume 
of the mixture) increases. 

The effect of the heat of phase transition on ~ was studied. It is obvious that there 
exists some limiting value of the heat of fusion L,, after attainment of which the quantity 

will saturate, i.e., at L > L, the limiting acceleration changes little (Fig. 2). This 
is true because the limiting acceleration is determined by the difference c~ - c 2 which 

j e' 
depends only weakly on the heat of phase transition at high values (~Nh2(pV/?T)~0) With 
change in L over the interval 0 < L <L, an abrupt rise in limiting acceleration occurs, 

caused by expenditure of gas energy in particle fusion. We note that at low LI~Nh 2 pv ~ L 2 -~-~0 I~ 

i.e., coincides with the asymptote for k values corresponding to low particle concentrations. 
This permits study of highly concentrated air-dispersed media with a discrete phase having a 
sufficiently low heat of phase transition on the basis of low concentration gas-particle 
mixtures with a finite heat of phase transition. 

Figure 3 shows the change in acceleration with time for several characteristic relaxa- 
tion times (T = i, 2, 3, 4 for curves 1-4). It is evident that with increase in the relaxa- 
tion time T the mixture acceleration profile on the wave frontapproaches the acceleration 
profile in a mixture with frozen fusion process (see Eq. (5)). The shock wave formation 
time then decreases with increase in �9 (Fig. 4), which is due to a decrease in the quantity 
of energy expended in the fusion process. It develops that at �9 > 3 the phase transition 
has practically no effect on the shock-waveformation time. 

In conclusion, we will note that the main calculation results were obtained with para- 
meter values cv1 = 750, Cpl = 1050, R = 300, To = 2300 K, P0 = 106, r = 2700, L = 2"105 . 
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